Modifications

26 octets supprimés ,  24 août 2014 à 13:41
aucun résumé des modifications
Ligne 11 : Ligne 11 :  
Pour déterminer les fréquences auxquelles l'intensité du champ est maximale, on peut, en première approche, diviser la vitesse de la lumière par la circonférence de la Terre et on obtient ainsi une fréquence fondamentale d'environ 7,5 Hz (on a alors une longueur d'onde qui "s'ajuste" exactement avec la circonférence de la terre). Quelques réflexions plus subtiles sur la taille du résonateur ont amené Schumann et König à prédire les séries de fréquence f<sub>n</sub>&nbsp;=&nbsp;(c/2&pi;a)&nbsp;(n(n&nbsp;+&nbsp;1))<sup>1/2</sup>&nbsp;Hz (dans cette équation, a est le rayon de la terre, et c est la vitesse de la lumière). En fait, les fréquences de résonance sont légèrement plus faibles et sont en moyenne de 7,8, 14,2, 19,6, 25,9 et 32 Hz. L'intensité (dépendante de la fréquence) du rayonnement au lieu d'observation, dépend également d'une façon complexe de l'éloignement par rapport à la source, donc des diverses cellules orageuses dispersées sur toute la surface du globe terrestre à travers les cellules orageuses de globe.<ref>Nickolaenko AP, Hayakawa M, Hobara Y (2010): Q-Bursts: Natural ELF Radio Transients. Surv Geophys 31:409–425</ref> En conséquence, le spectre du rayonnement Schumann est quelque peu variable dans le temps.
 
Pour déterminer les fréquences auxquelles l'intensité du champ est maximale, on peut, en première approche, diviser la vitesse de la lumière par la circonférence de la Terre et on obtient ainsi une fréquence fondamentale d'environ 7,5 Hz (on a alors une longueur d'onde qui "s'ajuste" exactement avec la circonférence de la terre). Quelques réflexions plus subtiles sur la taille du résonateur ont amené Schumann et König à prédire les séries de fréquence f<sub>n</sub>&nbsp;=&nbsp;(c/2&pi;a)&nbsp;(n(n&nbsp;+&nbsp;1))<sup>1/2</sup>&nbsp;Hz (dans cette équation, a est le rayon de la terre, et c est la vitesse de la lumière). En fait, les fréquences de résonance sont légèrement plus faibles et sont en moyenne de 7,8, 14,2, 19,6, 25,9 et 32 Hz. L'intensité (dépendante de la fréquence) du rayonnement au lieu d'observation, dépend également d'une façon complexe de l'éloignement par rapport à la source, donc des diverses cellules orageuses dispersées sur toute la surface du globe terrestre à travers les cellules orageuses de globe.<ref>Nickolaenko AP, Hayakawa M, Hobara Y (2010): Q-Bursts: Natural ELF Radio Transients. Surv Geophys 31:409–425</ref> En conséquence, le spectre du rayonnement Schumann est quelque peu variable dans le temps.
   −
== Les Résonance de Schumann dans l'[[ésotérisme]] et la [[pseudo-médecine]] ==
+
== Les Résonances de Schumann dans l'[[ésotérisme]] et la [[pseudo-médecine]] ==
 
[[image:Schumann_résonance3.png|Spectrogramme du champ électrique mesuré avec des résonances de Schumann et des signaux de brouillage techniques à distinguer dans la moitié gauche de l'image en tant que rayures. Les traits horizontaux dominants (flêches) sont des perturbations par les moindres mouvements de l'antenne.<ref>Andrea Dell’Immagine (2008): Notes on dimensioning a minimal eletrical field receiver for ELF/ULF bands. http://www.vlf.it/immagine/minimal_E.html</ref>|500px|thumb]]
 
[[image:Schumann_résonance3.png|Spectrogramme du champ électrique mesuré avec des résonances de Schumann et des signaux de brouillage techniques à distinguer dans la moitié gauche de l'image en tant que rayures. Les traits horizontaux dominants (flêches) sont des perturbations par les moindres mouvements de l'antenne.<ref>Andrea Dell’Immagine (2008): Notes on dimensioning a minimal eletrical field receiver for ELF/ULF bands. http://www.vlf.it/immagine/minimal_E.html</ref>|500px|thumb]]
Dans les cercles ésotériques, le rayonnement Schumann est souvent associé à tort à des parties du spectre de l'EEG (Electro-Encéphalo-Graphie) humain. Il est prétendu également que le rayonnement Schumann aurait une influence directe sur l'état de santé humaine. En raison de la faible intensité du rayonnement et du recouvrement de celui-ci par des champs alternatifs techniques, de tels effets ne sont cependant pas plausibles. Par le champ magnétique terrestre statique sont induits de surcroît, même au plus petit mouvement, dans une antenne (donc, par exemple, dans le corps humain), des champs alternatifs dans la plage des Herz, dont l'amplitude surpasse de beaucoup le rayonnement Schumann. Autrement dit, l'amplitude du champ magnétique de la résonance de Schumann (~ 1 picotesla) est de plusieurs ordres de grandeur plus faible que le champ magnétique de la Terre (~ 30-50 microteslas). En raison du champ électrique statique toujours présent, cela vaut également pour la composante électrique du rayonnement Schumann (ci-contre). De fait, l'amplitude du champ électrique de résonance de Schumann (~ 300 microvolts par mètre) est beaucoup plus petite que le champ statique électrique par temps ordinaire (~ 150 V / m) dans l'atmosphère. <br><br><br><br><br><br>>
+
Dans les cercles ésotériques, le rayonnement Schumann est souvent associé à tort à des parties du spectre de l'EEG (Electro-Encéphalo-Graphie) humain. Il est prétendu également que le rayonnement Schumann aurait une influence directe sur l'état de santé humaine. En raison de la faible intensité du rayonnement et du recouvrement de celui-ci par des champs alternatifs techniques, de tels effets ne sont cependant pas plausibles. Par le champ magnétique terrestre statique sont induits de surcroît, même au plus petit mouvement, dans une antenne (donc, par exemple, dans le corps humain), des champs alternatifs dans la plage des Herz, dont l'amplitude surpasse de beaucoup le rayonnement Schumann. Autrement dit, l'amplitude du champ magnétique de la résonance de Schumann (~ 1 picotesla) est de plusieurs ordres de grandeur plus faible que le champ magnétique de la Terre (~ 30-50 microteslas). En raison du champ électrique statique toujours présent, cela vaut également pour la composante électrique du rayonnement Schumann (ci-contre). De fait, l'amplitude du champ électrique de résonance de Schumann (~ 300 microvolts par mètre) est beaucoup plus petite que le champ statique électrique par temps ordinaire (~ 150 V / m) dans l'atmosphère.
 
      
{{OtherLang|ge=Schumann-Frequenz}}
 
{{OtherLang|ge=Schumann-Frequenz}}
7 091

modifications