HHO
HHO (auch Browns Gas, Browngas, Brown's Gas, Braun Gas, Green Gas, Rhode's Gas oder Watergas) ist ein gasförmiges explosives Gemisch von Wasserstoff und Sauerstoff, welches üblicherweise auch als Knallgas bezeichnet wird. In einigen pseudowissenschaftlichen und verschwörungstheoretischen Kreisen werden dem Gasgemisch besondere Eigenschaften nachgesagt, wobei die herkömmliche Bezeichnung Knallgas zugunsten von Browns Gas usw. vermieden wird.
Eigenschaften
Knallgas kann einfachst durch Zufuhr von elektrischer Energie durch Elektrolyse aus Wasser gewonnen werden, wobei eine geringe Menge einer Base oder Säure hinzugegeben werden muss. Bei extrem hohen Temperaturen kann aus Wasser direkt Knallgas entstehen.
Knallgas ist explosiv. Bei Zündung bildet sich aus Wasserstoff und Sauerstoff wieder Wasser (plus etwas Wasserstoffperoxid). Um zünden zu können, muss in Luft unter atmosphärischem Druck der Volumenanteil des Wasserstoffs zwischen 4 und 77 % liegen. Die heftigste Reaktion entsteht bei einem Verhältnis von Zwei Wasserstoffanteilen zu einem Sauerstoffanteil. Wenn das Knallgas durch ein Wasserbad geleitet wird, läßt sich "Zurückzünden" längs eines Schlauches oder Rohres vermeiden.
Die freiwerdende Energie beträgt 571,6 kJ/mol H0.
Behauptete Wundereigenschaften
Als HHO oder Browns Gas ist das gasförmige Wasserstoff-Sauerstoffgemisch auch Thema von Freie Energie-Anhängern. Diese sind der irrigen Auffassung, dass durch die Verbrennung von Knallgas mehr Energie freigesetzt werde, als zu deren Erzeugung notwendig sei [1]. Daher eigene sich eine kombinierte Wasserzerlegung (Elektrolyse) mit anschliessender Kanallgasreaktion als eigenständige Energiequelle. Einige betrügerische Wasserauto-Konzepte basieren auf diesem Prinzip.
Verschwörungstheorien
In diesem Zusammenhang ist oftmals zu lesen, dass eine kombinierte Elektrolyse-Verbrennung so einfach und genial sei, dass niemand bislang auf die Idee gekommen sei, Knallgas als Lösung des weltweiten Energiemangels zu verwenden. Behauptet wird also, dass das Prinzip zu einfach sei, um kommerziell anwendbar zu sein. Dass die Verwendung von HHO sich nicht durchgesetzt habe, liege nicht an den ungünstigen energetischen Wirkungsgraden, sondern an Widerständen mächtiger Konzerne, die im Rahmen einer Verschwörung den Einsatz behindern würden. Entwickler und Privatforscher in Sachen HHO müssten daher meist im Geheimen forschen und entwickeln.
Ökonomie und Energiebilanz
Zurzeit (2009) ist es am ökonomischsten, Wasserstoff aus Erdöl oder Erdgas und Sauerstoff aus der Luft zu gewinnen, anstatt eine Elektrolyse einzusetzen.
- Der energetische Wirkungsgrad der Elektrolyse von Wasser zur Erzeugung von Wasserstoff und Sauerstoff liegt über 70%. Die restlichen 30% gehen als Wärme verloren. Spezielle große Elektrolysegeräte können allerdings durchaus 80% erreichen, wenn mit hohen Temperaturen und hohen Kaliumhydroxidbeimischungen gearbeitet wird. Zurzeit wird an der Hochtemperatur-Wasserdampf-Elektrolyse (bei 800–1000 °C) an Festelektrolyten geforscht. Zur Herstellung von 1 m3 Wasserstoff wird bei modernen Anlagen eine Stromenergie von 4,3–4,9 kWh benötigt.
- Der Wirkungsgrad der Knallgasreaktion ist ebenfalls nicht 100%, sondern liegt bei ebenfalls nur etwa 70%.
- Bei der Umwandlung der freiwerdenden Knallgas-Energie in mechanische Energie durch einen Ottomotor zeigt sich ein energetischer Wirkungsgrad von nur etwa 30%. Hinzu kämen noch Probleme durch eine höhere Verbrennungstemperatur von Knallgas gegenüber Benzin oder Dieselkraftstoff und damit verbunden eine höhere Emission von Stickoxiden [2].
Weblinks
- http://www.rzuser.uni-heidelberg.de/~ltemgoua/chemie/Knallgas.html
- http://de.wikipedia.org/wiki/Elektrolyse
- http://evolution.loremo.com/component/option,com_fireboard/Itemid,138/func,view/id,19425/catid,23/limit,30/limitstart,90/lang,de/
Quellenangaben
- ↑ Zitat HHO-Forum: Der Einsatz um Wasserstoff zu erzeugen ist erheblich geringer, als die Energie die bei der Reaktion entsteht. Man muß nur die richtige Reaktion anstoßen und dann entsprechend nutzen.
- ↑ http://de.wikipedia.org/wiki/Wasserstoffwirtschaft