Änderungen

1.874 Bytes hinzugefügt ,  23:01, 22. Feb. 2022
keine Bearbeitungszusammenfassung
Zeile 10: Zeile 10:  
Eine Substanz mit der Summenformel H<sub>3</sub>O<sub>2</sub> wird nach unterschiedlichen Quellen als Dioxidanium, Dioxidanylium oder Hydroperoxonium bezeichnet. Auch wird irrtümlicherweise behauptet, dass der Substanz die [https://de.wikipedia.org/wiki/CAS-Nummer CAS-Nummer] 60593-56-8 zugeordnet sei.
 
Eine Substanz mit der Summenformel H<sub>3</sub>O<sub>2</sub> wird nach unterschiedlichen Quellen als Dioxidanium, Dioxidanylium oder Hydroperoxonium bezeichnet. Auch wird irrtümlicherweise behauptet, dass der Substanz die [https://de.wikipedia.org/wiki/CAS-Nummer CAS-Nummer] 60593-56-8 zugeordnet sei.
 
Die Substanz ist vielmehr Diskussionsgegenstand im [[alternativmedizin]]schen Bereich und wird zur Glaubhaftmachung von Behauptungen zur [[Homöopathie]] und zahlreicher Scharlatanerie- und [[Wellness]]produkte herangezogen. Pollacks Hypothesen um sein EZ-Wasser haben zahlreiche Hersteller animiert, Geräte anzubieten, die angeblich in der Lage seien, EZ-Wasser zu produzieren. In diesem Zusammenhang werden dem EZ-Wasser stets ausschließlich positive Eigenschaften zugeschrieben.
 
Die Substanz ist vielmehr Diskussionsgegenstand im [[alternativmedizin]]schen Bereich und wird zur Glaubhaftmachung von Behauptungen zur [[Homöopathie]] und zahlreicher Scharlatanerie- und [[Wellness]]produkte herangezogen. Pollacks Hypothesen um sein EZ-Wasser haben zahlreiche Hersteller animiert, Geräte anzubieten, die angeblich in der Lage seien, EZ-Wasser zu produzieren. In diesem Zusammenhang werden dem EZ-Wasser stets ausschließlich positive Eigenschaften zugeschrieben.
In der Werbung werden Strukturformeln (auch als räumliche Zeichnungen) zum EZ-Wasser veröffentlicht (siehe Abbildung rechts).
+
In der Werbung werden Strukturformeln (auch als räumliche Zeichnungen) zum EZ-Wasser veröffentlicht (siehe Abbildung).
    
In der wissenschaftlichen Chemie bilden einzelne Wassermoleküle in flüssigem Zustand tetraederförmige Wassercluster, die sich temperaturabhängig ständig neu bilden und wieder auflösen. Die Lebensdauer einer Wasserstoffbrückenbindung liegt dabei typischerweise im Bereich von 1–20 ps (ps = Pikosekunde = 10<sup>-12</sup> Sekunden). Stabile quasikristalline Strukturen von Wasser im flüssigen Zustand sind nicht bekannt und auch sehr unwahrscheinlich.<ref>https://de.wikipedia.org/wiki/Wassercluster</ref>
 
In der wissenschaftlichen Chemie bilden einzelne Wassermoleküle in flüssigem Zustand tetraederförmige Wassercluster, die sich temperaturabhängig ständig neu bilden und wieder auflösen. Die Lebensdauer einer Wasserstoffbrückenbindung liegt dabei typischerweise im Bereich von 1–20 ps (ps = Pikosekunde = 10<sup>-12</sup> Sekunden). Stabile quasikristalline Strukturen von Wasser im flüssigen Zustand sind nicht bekannt und auch sehr unwahrscheinlich.<ref>https://de.wikipedia.org/wiki/Wassercluster</ref>
Zeile 17: Zeile 17:     
==Behauptete chemische und physikalische Eigenschaften==
 
==Behauptete chemische und physikalische Eigenschaften==
[[image:Ez layers.jpg|Räumliche Anordnung der Wassermoleküle im (hypothetischen) hexagonalem Wasser, wie Pollack es sich vorstellt. Daneben die Summenformel des negativ geladenen Wassers in der EZ (Oxygen= Sauerstoffatome, Hydrogen= Wasserstoffatome) (Quelle: Pollack 2013). |300px|thumb]]
+
[[image:Ez layers.jpg|Räumliche Anordnung der Wassermoleküle im (hypothetischen) hexagonalem Wasser, wie Pollack es sich vorstellt. Daneben die Summenformel des negativ geladenen Wassers in der EZ (rot= Sauerstoffatome, blau= Wasserstoffatome). Die viele Hunderte Schichten wären untereinander über den bereits zweibindigen Wasserstoff verknüpft, was den Wasserstoff dreibindig machen würde (Quelle: Pollack 2013). |300px|thumb]]
    
Das von Pollack gemeinte EZ-Wasser habe ein anderes Verhältnis von Wasserstoff zu Sauerstoff als herkömmliches Wasser, bei dem auf ein Sauerstoffatom zwei Wasserstoffatome kommen. Das Molekulargewicht sei 35 g/mol gegenüber 18 g/mol bei Wasser. Andere Schreibweise der Summenformel: HO-(O+)-H2. Das Dioxidanium verdampfe erst bei 150,2° Celsius auf Meereshöhe (1013 hPa).<ref>http://www.guidechem.com/cas-605/60593-56-8.html</ref><ref>http://www.chemnet.com/cas/en/60593-56-8/dioxidanium.html</ref>
 
Das von Pollack gemeinte EZ-Wasser habe ein anderes Verhältnis von Wasserstoff zu Sauerstoff als herkömmliches Wasser, bei dem auf ein Sauerstoffatom zwei Wasserstoffatome kommen. Das Molekulargewicht sei 35 g/mol gegenüber 18 g/mol bei Wasser. Andere Schreibweise der Summenformel: HO-(O+)-H2. Das Dioxidanium verdampfe erst bei 150,2° Celsius auf Meereshöhe (1013 hPa).<ref>http://www.guidechem.com/cas-605/60593-56-8.html</ref><ref>http://www.chemnet.com/cas/en/60593-56-8/dioxidanium.html</ref>
Zeile 51: Zeile 51:  
Das Phänomen, dass sich kleine Partikel (Kolloide) an einer hydrophilen Oberfläche abstoßen, kann im Rahmen der etablierten wissenschaftlichen Theorien zu solchen Effekten erklärt werden. Eine Oberfläche wie die des Nafion ist chemisch aktiv, es handelt sich um einen Ionenaustauscher. Dabei werden von der Oberfläche Ionen (Protonen) in das Wasser abgegeben und entsprechende Gegenionen von der Membran aufgenommen. Dies hat zur Folge, dass sich von der Oberfläche weg ein sog. Gradient (eine stetig an- oder absteigende Konzentration) an Ionen bildet. In diesem Gradient werden kleine Teilchen, die ebenfalls Ladungen (Ionen) auf ihrer Oberfläche tragen können, von der Oberfläche weg bewegt. Der Effekt nennt sich [https://en.wikipedia.org/wiki/Diffusiophoresis_and_diffusioosmosis Diffusiophorese] und beschreibt solche Phänomene.<ref>https://www.chemie.de/news/99533/ausschwaermende-teilchen.html</ref> Im einzelnen ist der Effekt komplexer als hier angedeutet, aber er erklärt das beobachtete Phänomen durch Modellrechnung auch quantitativ.
 
Das Phänomen, dass sich kleine Partikel (Kolloide) an einer hydrophilen Oberfläche abstoßen, kann im Rahmen der etablierten wissenschaftlichen Theorien zu solchen Effekten erklärt werden. Eine Oberfläche wie die des Nafion ist chemisch aktiv, es handelt sich um einen Ionenaustauscher. Dabei werden von der Oberfläche Ionen (Protonen) in das Wasser abgegeben und entsprechende Gegenionen von der Membran aufgenommen. Dies hat zur Folge, dass sich von der Oberfläche weg ein sog. Gradient (eine stetig an- oder absteigende Konzentration) an Ionen bildet. In diesem Gradient werden kleine Teilchen, die ebenfalls Ladungen (Ionen) auf ihrer Oberfläche tragen können, von der Oberfläche weg bewegt. Der Effekt nennt sich [https://en.wikipedia.org/wiki/Diffusiophoresis_and_diffusioosmosis Diffusiophorese] und beschreibt solche Phänomene.<ref>https://www.chemie.de/news/99533/ausschwaermende-teilchen.html</ref> Im einzelnen ist der Effekt komplexer als hier angedeutet, aber er erklärt das beobachtete Phänomen durch Modellrechnung auch quantitativ.
    +
[[Datei:PH gradient pollack.jpg|mini|Pollack hat selbst gezeigt, dass sich ein pH-Gradient jenseits der Membran bildet. Das widerlegt, dass sich in der Ausschlusszone ein homogenes Substrat ("Hexagonales Wasser") gebildet hat. Die unterschiedlichen Färbungen zeigen unterschiedliche pH-Werte an.<ref>G. H. Pollack The Journal of Physical Chemistry B 2013 117 (25), 7843-7846 DOI: 10.1021/jp312686x </ref>]]
 
Die von Pollack vermutete und nicht im Einklang mit allen bisherigen Erkenntnissen stehende Vorstellung, eine Strukturierung des Wassers - und damit eine Phasenwandlung -, ist für die Erklärung der Ausschlusszone nicht nötig. Er hat selbst demonstriert, dass sich an einer Nafion-Membran ein pH-Gradient ausbildet, der sich über viele Millimeter(!) erstreckt (Abbildung). Somit hat er gezeigt, dass sich ein Gradient, keine abrupte Änderung (wie es sein EZ-Wasser mit sich bringen müsste), in der Ausschlusszone bildet. Das ist die Voraussetzung für den Prozess der Diffusiophorese und widerlegt eine in sich homogene Ausschlusszone.
 
Die von Pollack vermutete und nicht im Einklang mit allen bisherigen Erkenntnissen stehende Vorstellung, eine Strukturierung des Wassers - und damit eine Phasenwandlung -, ist für die Erklärung der Ausschlusszone nicht nötig. Er hat selbst demonstriert, dass sich an einer Nafion-Membran ein pH-Gradient ausbildet, der sich über viele Millimeter(!) erstreckt (Abbildung). Somit hat er gezeigt, dass sich ein Gradient, keine abrupte Änderung (wie es sein EZ-Wasser mit sich bringen müsste), in der Ausschlusszone bildet. Das ist die Voraussetzung für den Prozess der Diffusiophorese und widerlegt eine in sich homogene Ausschlusszone.
    
Auch wird hieran ein weiteres Missverständnis Pollacks deutlich: bei dem pH-Gradienten handelt es sich um einen Konzentrationsgradienten, nicht um einen Ladungsgradienten (Protonen werden abgegeben, Gegenionen aus dem Wasser aufgenommen). Da an der Membran Ionen ausgetauscht werden, ist die Ladung entlang des Gradienten immer ausgeglichen. Dieses Missverständnis hatte er schon an anderer Stelle zum Ausdruck gebracht, da er festgestellt haben wollte, dass man mit einer einfachen Elektrolysezelle Ladung speichern könne. Diese Fehlinterpretation konnte leicht widerlegt werden.<ref>Horacio R. Corti and Agustin J. Colussi: Do Concentration Cells Store Charge in Water? Comment on Can Water Store Charge? Langmuir 2009 25 (11), 6587-6589 https://doi.org/10.1021/la900723t</ref>
 
Auch wird hieran ein weiteres Missverständnis Pollacks deutlich: bei dem pH-Gradienten handelt es sich um einen Konzentrationsgradienten, nicht um einen Ladungsgradienten (Protonen werden abgegeben, Gegenionen aus dem Wasser aufgenommen). Da an der Membran Ionen ausgetauscht werden, ist die Ladung entlang des Gradienten immer ausgeglichen. Dieses Missverständnis hatte er schon an anderer Stelle zum Ausdruck gebracht, da er festgestellt haben wollte, dass man mit einer einfachen Elektrolysezelle Ladung speichern könne. Diese Fehlinterpretation konnte leicht widerlegt werden.<ref>Horacio R. Corti and Agustin J. Colussi: Do Concentration Cells Store Charge in Water? Comment on Can Water Store Charge? Langmuir 2009 25 (11), 6587-6589 https://doi.org/10.1021/la900723t</ref>
   −
[[Datei:PH gradient pollack.jpg|mini|Pollack hat selbst gezeigt, dass sich ein pH-Gradient jenseits der Membran bildet. Das widerlegt, dass sich in der Ausschlusszone ein homogenes Substrat ("Hexagonales Wasser") gebildet hat. Die unterschiedlichen Färbungen zeigen unterschiedliche pH-Werte an.<ref>G. H. Pollack The Journal of Physical Chemistry B 2013 117 (25), 7843-7846 DOI: 10.1021/jp312686x </ref>]]
+
==Hexagonales (EZ-)Wasser und [[Polywasser]]==
 +
Bereits 1969 wurde eine hexagonale Struktur für eine scheinbar neu entdeckte Form des Wasser vorgeschlagen. Nachdem der Russe Fedyakin Anfang der 60er Jahre entdeckt hatte, dass sich - in Kapillaren kondensiertes - Wasser nach einiger Zeit in zwei von einander unterscheidbaren Schichten trennte, untersuchte man die scheinbar neuartige Form des Wassers genauer. Der Amerikaner Lippincott wollte dann 1969 anhand spektroskopischer Messungen festgestellt haben, dass es sich um eine neue Form des Wasser handeln müsse und schlug die entsprechende hexagonale (polymere) Struktur vor. Dies führte damals zu heftigen Auseinandersetzungen innerhalb der Wissenschaftsgemeinde, da solche Strukturen auch damals schon als unwahrscheinlich galten.
 +
 
 +
[[Datei:Polywater.jpg|mini|links|Die hexagonale Struktur des Wassers war schon einmal fälschlicherweise vorgeschlagen worden. Sie musste für das nie nachweisbare "Polywasser" verworfen werden]]
 +
Es finden sich weitere Parallelen zum EZ-Wasser von Pollack: So sollte das Polywasser eine höhere Dichte als gewöhnliches Wasser aufweisen und viskoser sein. Auch der Gefrier- und Siedepunkt sollten sich deutlich von herkömmlichen Wasser unterscheiden. Ebenso schien für manchen Pseudowissenschaftler der Beweis erbracht, Wasser (im flüssigen Zustand) könne eine bestimmte Struktur annehmen, was erlauben würde, darin "Informationen" zu speichern.
 +
 
 +
Erst durch genauere Untersuchungen ließ sich feststellen, dass die scheinbar neuen Eigenschaften durch Verunreinigungen bzw. Spuren von Salzen und Silikaten zustande kamen. Die Existenz eines "Polywassers" wurde verworfen und gilt heute als ein Beispiel für wissenschaftliche Fehlentwicklung.
    
==EZ-Wasser-Produkte und Markt==
 
==EZ-Wasser-Produkte und Markt==