Zeile 43: |
Zeile 43: |
| *1872. Erteilung des Patents [http://earlyradiohistory.us/126356.htm 126356 ''IMPROVEMENT IN COLLECTING ELECTRICITY FOR TELEGRAPHING, &c.''] am 30. April 1872 an den in Auburn (NY) ansässigen William Henry Ward. Ward beschreibt einen "tower", der auf dem Gipfel eines hohen Berges aufgebaut werden soll und eine die Erde umgebende "natürliche Elektrizität" anzapfen soll: ''My invention consists of a tower for the purpose of receiving and imparting natural electricity, so as to be in constant contact with that upper stratum of electricity which surrounds the earth, by tapping which a never-failing supply is formed when brought into contact with the earth..'' Die an einen Blitzableiter erinnernde passive Anlage leitet die ''aerial electricity'' über Drahtleitungen an die Nutzer weiter. Ward schreibt weiter in seinem Patent, dass er so ohne Batterien mit der Erde als Rückleiter einen Stromkreis bilden könne um beispielsweise die Stadt Denver über eine Anlage auf dem Pike's Peak mit Buenos Aires in Argentinien über einen Telegraphenverbindung zu verbinden: ''..By the use of aerial electricity I entirely dispense with artificial batteries, forming my circuit merely by connecting the aerial current with the earth current. For instance, to bring Buenos Ayres, in South America, into direct connection with New York, the following plan would be pursued: One electrical tower is erected on Pike's Peak or any other suitable high mountain in North America, and another similar tower on some suitable peak of the Andes in South America. The former would, by means of land-lines, be connected directly with Denver, which place is again connected with all the prominent cities of the States. In a similar manner the southern tower is connected by land-lines with the prominent cities via Quito. New York telegraphs to the tower on Pike's Peak, and the operator having connected the land-line with the aerial current, the signals are transmitted through the aerial current to the tower in the Andes in South America, and from there--the land-lines being suitably connected with the aerial current--to Quito and Buenos Ayres. In this manner a message would be sent entirely by natural electricity in place of artificial. In the same manner a message may be sent across the ocean by having a high tower on each continent, each of which towers would have to be, of course, through land-lines connected with the earth to enable the ground current with the aerial current to form a circuit...'' | | *1872. Erteilung des Patents [http://earlyradiohistory.us/126356.htm 126356 ''IMPROVEMENT IN COLLECTING ELECTRICITY FOR TELEGRAPHING, &c.''] am 30. April 1872 an den in Auburn (NY) ansässigen William Henry Ward. Ward beschreibt einen "tower", der auf dem Gipfel eines hohen Berges aufgebaut werden soll und eine die Erde umgebende "natürliche Elektrizität" anzapfen soll: ''My invention consists of a tower for the purpose of receiving and imparting natural electricity, so as to be in constant contact with that upper stratum of electricity which surrounds the earth, by tapping which a never-failing supply is formed when brought into contact with the earth..'' Die an einen Blitzableiter erinnernde passive Anlage leitet die ''aerial electricity'' über Drahtleitungen an die Nutzer weiter. Ward schreibt weiter in seinem Patent, dass er so ohne Batterien mit der Erde als Rückleiter einen Stromkreis bilden könne um beispielsweise die Stadt Denver über eine Anlage auf dem Pike's Peak mit Buenos Aires in Argentinien über einen Telegraphenverbindung zu verbinden: ''..By the use of aerial electricity I entirely dispense with artificial batteries, forming my circuit merely by connecting the aerial current with the earth current. For instance, to bring Buenos Ayres, in South America, into direct connection with New York, the following plan would be pursued: One electrical tower is erected on Pike's Peak or any other suitable high mountain in North America, and another similar tower on some suitable peak of the Andes in South America. The former would, by means of land-lines, be connected directly with Denver, which place is again connected with all the prominent cities of the States. In a similar manner the southern tower is connected by land-lines with the prominent cities via Quito. New York telegraphs to the tower on Pike's Peak, and the operator having connected the land-line with the aerial current, the signals are transmitted through the aerial current to the tower in the Andes in South America, and from there--the land-lines being suitably connected with the aerial current--to Quito and Buenos Ayres. In this manner a message would be sent entirely by natural electricity in place of artificial. In the same manner a message may be sent across the ocean by having a high tower on each continent, each of which towers would have to be, of course, through land-lines connected with the earth to enable the ground current with the aerial current to form a circuit...'' |
| *1872. Mahlon Loomis erhält im Juli 1872 ein Patent [http://www.google.com/patents?id=ayxCAAAAEBAJ&printsec=abstract&zoom=4#v=onepage&q&f=false U.S. Patent 129971] über einen "drahtlosen Telegraphen". Die Idee von Loomis war es, "natürliche atmosphärische Elektrizität" als Ersatz für Telegraphenleitungen zu nutzen, mit der Erde als Rückleitung. Auch wollte er diese Energie als Wärmequelle und zu anderen Zwecken nutzen. Loomis erläuterte jedoch nicht genau, wie er seine Erfindung realisieren wollte. Im Prinzip war dieses Patent sehr ähnlich zu einem drei Monate zuvor erteilten Patent (U.S. Patent 126,356) von William Henry Ward zu einem "Radio". Auch Ward erläuterte nicht genau wie ein derartiges Radio zu realisieren sei. Möglicherweise wollte Ward und Loomis die Nutzung atmosphärischer statischer Aufladungen bei Telegraphenleitungen patentrechtlich nutzen. Auch Tesla wird später ähnliche Vorstellungen entwickeln.<ref>http://www.loc.gov/exhibits/treasures/trr083.html</ref> | | *1872. Mahlon Loomis erhält im Juli 1872 ein Patent [http://www.google.com/patents?id=ayxCAAAAEBAJ&printsec=abstract&zoom=4#v=onepage&q&f=false U.S. Patent 129971] über einen "drahtlosen Telegraphen". Die Idee von Loomis war es, "natürliche atmosphärische Elektrizität" als Ersatz für Telegraphenleitungen zu nutzen, mit der Erde als Rückleitung. Auch wollte er diese Energie als Wärmequelle und zu anderen Zwecken nutzen. Loomis erläuterte jedoch nicht genau, wie er seine Erfindung realisieren wollte. Im Prinzip war dieses Patent sehr ähnlich zu einem drei Monate zuvor erteilten Patent (U.S. Patent 126,356) von William Henry Ward zu einem "Radio". Auch Ward erläuterte nicht genau wie ein derartiges Radio zu realisieren sei. Möglicherweise wollte Ward und Loomis die Nutzung atmosphärischer statischer Aufladungen bei Telegraphenleitungen patentrechtlich nutzen. Auch Tesla wird später ähnliche Vorstellungen entwickeln.<ref>http://www.loc.gov/exhibits/treasures/trr083.html</ref> |
| + | *1874. Karl Ferdinand Braun (1850-1918) beschreibt einen Bleiglanz (Galena) Detektor. |
| *1878. Dem Engländer David E. Hughes werden im Jahre 1878 mögliche Anwendungen elektromagnetischer Wellen über 500 Fuss (152 Meter) (nach anderen Angaben von einem Raum zu einem anderen Raum innerhalb eines Hauses) durch einen Sender mit Funkenstrecke nachgesagt. 1879 soll Hughes seinen Sender kontinuirlich habe laufen gelassen und soll sich mit einem Empfänger bis zu 152 Meter entfernt haben können um das Sendesignal zu empfangen. Wahrscheinlich handelte es sich jedoch um Induktionseffekte, die Royal Society lehnte 1880 seine Angaben ab.<ref>http://earlyradiohistory.us/1922hugh.htm</ref> | | *1878. Dem Engländer David E. Hughes werden im Jahre 1878 mögliche Anwendungen elektromagnetischer Wellen über 500 Fuss (152 Meter) (nach anderen Angaben von einem Raum zu einem anderen Raum innerhalb eines Hauses) durch einen Sender mit Funkenstrecke nachgesagt. 1879 soll Hughes seinen Sender kontinuirlich habe laufen gelassen und soll sich mit einem Empfänger bis zu 152 Meter entfernt haben können um das Sendesignal zu empfangen. Wahrscheinlich handelte es sich jedoch um Induktionseffekte, die Royal Society lehnte 1880 seine Angaben ab.<ref>http://earlyradiohistory.us/1922hugh.htm</ref> |
| *1884 entdeckt der italienische Physiker Temistocle Calzecchi-Onesti den ersten Kohärer als primitiven Detektor für elektromagnetische Wellen, der kurz danach von Edouard Branly und später von Oliver Joseph Lodge verbessert wird. | | *1884 entdeckt der italienische Physiker Temistocle Calzecchi-Onesti den ersten Kohärer als primitiven Detektor für elektromagnetische Wellen, der kurz danach von Edouard Branly und später von Oliver Joseph Lodge verbessert wird. |
| *1885 formuliert T.A. Edison das 1891 erteilte Patent zu drahtlosem Schiffsfunk. Offenbar meint Edison aber keine elektromagnetischen Wellen. | | *1885 formuliert T.A. Edison das 1891 erteilte Patent zu drahtlosem Schiffsfunk. Offenbar meint Edison aber keine elektromagnetischen Wellen. |
| *1886 entdeckt der Physiker Heinrich Hertz die elektromagnetischen Wellen (im UHF-Bereich) und stellt dazu Versuche an (so auch zur Reflexion) und weist die Felder als Bestätigung der Maxwell-Gleichungen nach. Zur Detektion verwendet er eine kleine Funkenstrecke. Die Veröffentlichung von Hertz erfolgt 1888. Der an einer Universität tätige Hertz glaubt an keine nutzbare Bedeutung der Wellen und erwägt auch keine Patente anzumelden. | | *1886 entdeckt der Physiker Heinrich Hertz die elektromagnetischen Wellen (im UHF-Bereich) und stellt dazu Versuche an (so auch zur Reflexion) und weist die Felder als Bestätigung der Maxwell-Gleichungen nach. Zur Detektion verwendet er eine kleine Funkenstrecke. Die Veröffentlichung von Hertz erfolgt 1888. Der an einer Universität tätige Hertz glaubt an keine nutzbare Bedeutung der Wellen und erwägt auch keine Patente anzumelden. |
− | *1889. Der walisische Ingenieur William Henry Preece überträgt Morsezeichen über 1,6 km (1 Meile) bei Coniston Water (Cumberland). | + | *1889. Der walisische Ingenieur William Henry Preece soll Morsezeichen über 1,6 km (1 Meile) bei Coniston Water (Cumberland) übertragen haben. Dieses Ereignis ist nicht sicher dokumentiert. |
| *1891. Ab 1891 beschäftigt sich Nikola Tesla mit hochfrequenten Wechselspannungen und stellt Versuche im KHz-Bereich an, und verbreitet in Vorträgen die Möglichkeit einer drahtlosen Kommunikation. Zwischen 1895 und 1899 soll Tesla mehrfach Sendungen über eine große Entfernungen übertragen haben. Allerdings liegen erst ab 1898 Belege dafür vor. Auch Tesla verwendet einen Knallfunkensender. Tesla entwickelt auch Verbesserungen der Funkenstrecke. | | *1891. Ab 1891 beschäftigt sich Nikola Tesla mit hochfrequenten Wechselspannungen und stellt Versuche im KHz-Bereich an, und verbreitet in Vorträgen die Möglichkeit einer drahtlosen Kommunikation. Zwischen 1895 und 1899 soll Tesla mehrfach Sendungen über eine große Entfernungen übertragen haben. Allerdings liegen erst ab 1898 Belege dafür vor. Auch Tesla verwendet einen Knallfunkensender. Tesla entwickelt auch Verbesserungen der Funkenstrecke. |
| *1891. Tesla bekommt am 23.6.1891 das US-Patent 454622 mit dem Titel "System of Electric Lighting" erteilt [http://www.uoguelph.ca/~antoon/tesla/patents/00454622.pdf]. Dieses Patent wird von Seiten der Tesla-Anhänger als Tesla's Entdeckung elektromagnetischer Wellen bezeichnet. In der Patentschrift spricht jedoch Tesla nur von einer "neuartigen Methode und Apparat zur elektrischen Beleuchtung", und zwar unter Hochspannungs- und Hochfrequenzbedingungen (wahrscheinlich im Bereich 15 - 18 KHz). Das Patent bezieht sich auf einen Wechselstromgenerator, dessen Spannung hochtransformiert wird. Lampen müssen werden mit einem Anschlußpol an die Hochspannung angeschlossen. Die hohe Feldstärke der Wechselspannung reicht hier aus, um über die (geringe) Kapazität ein Leuchten der Lampen zu erreichen. Eine Kabelverbindung ist aber hier (siehe Bild rechts) Voraussetzung, es handelt sich also um eine drahtgebundene Anwendung. | | *1891. Tesla bekommt am 23.6.1891 das US-Patent 454622 mit dem Titel "System of Electric Lighting" erteilt [http://www.uoguelph.ca/~antoon/tesla/patents/00454622.pdf]. Dieses Patent wird von Seiten der Tesla-Anhänger als Tesla's Entdeckung elektromagnetischer Wellen bezeichnet. In der Patentschrift spricht jedoch Tesla nur von einer "neuartigen Methode und Apparat zur elektrischen Beleuchtung", und zwar unter Hochspannungs- und Hochfrequenzbedingungen (wahrscheinlich im Bereich 15 - 18 KHz). Das Patent bezieht sich auf einen Wechselstromgenerator, dessen Spannung hochtransformiert wird. Lampen müssen werden mit einem Anschlußpol an die Hochspannung angeschlossen. Die hohe Feldstärke der Wechselspannung reicht hier aus, um über die (geringe) Kapazität ein Leuchten der Lampen zu erreichen. Eine Kabelverbindung ist aber hier (siehe Bild rechts) Voraussetzung, es handelt sich also um eine drahtgebundene Anwendung. |
Zeile 55: |
Zeile 56: |
| *1894: Hutin & LeBlanc erhalten das US-Patent 527857 über induktive Energieübertragung bei einer Frequenz von 3 KHz. | | *1894: Hutin & LeBlanc erhalten das US-Patent 527857 über induktive Energieübertragung bei einer Frequenz von 3 KHz. |
| *1894. Der indische Physiker Jagadish Chandra Bose führt im November 1894 in Kolgata eine öffentliche Funkübertragung vor, bei der der Empfänger im Sinne einer Fernsteuerung Klingeln ertönen lässt und Knallkörper gezündet werden. 1896 überbrückt Bose im UHF-Bereich eine Entfernung von einer halben Meile. Bose entwickelt später einen verbesserten Kohärer.<ref>http://www.tuc.nrao.edu/~demerson/bose/bose.html</ref><ref>http://www.ieeeghn.org/wiki/index.php/Jagadish_Chandra_Bose</ref> | | *1894. Der indische Physiker Jagadish Chandra Bose führt im November 1894 in Kolgata eine öffentliche Funkübertragung vor, bei der der Empfänger im Sinne einer Fernsteuerung Klingeln ertönen lässt und Knallkörper gezündet werden. 1896 überbrückt Bose im UHF-Bereich eine Entfernung von einer halben Meile. Bose entwickelt später einen verbesserten Kohärer.<ref>http://www.tuc.nrao.edu/~demerson/bose/bose.html</ref><ref>http://www.ieeeghn.org/wiki/index.php/Jagadish_Chandra_Bose</ref> |
| + | *1894. Am 14 August 1894 führt der englische Physiker Oliver Lodge in Oxford eine drahtlose Nachrichtenübermittlung vor.<ref>P Rowlands and J P Wilson, Oliver Lodge and the invention of Radio (PD Publications, 1994).</ref> |
| *1895 beginnt Guglielmo Marconi mit Versuchen. Im Sommer 1895 gelingt ihm eine Verbindung über 1,5 km Entfernung in Salvan in den Schweizer Alpen.<ref>http://118marconi.free.fr/articlewiege.pdf</ref> | | *1895 beginnt Guglielmo Marconi mit Versuchen. Im Sommer 1895 gelingt ihm eine Verbindung über 1,5 km Entfernung in Salvan in den Schweizer Alpen.<ref>http://118marconi.free.fr/articlewiege.pdf</ref> |
| *1895. Der russische Physiker Alexander Popov führt im Mai 1895 öffentlich eine Funkverbindung vor. Die überbrückten Entfernungen zu dieser Zeit waren etwa 500 Meter. Nach anderen Angaben gelangen Popov seine Versuche erst 1897. | | *1895. Der russische Physiker Alexander Popov führt im Mai 1895 öffentlich eine Funkverbindung vor. Die überbrückten Entfernungen zu dieser Zeit waren etwa 500 Meter. Nach anderen Angaben gelangen Popov seine Versuche erst 1897. |