Änderungen

Zur Navigation springen Zur Suche springen
Zeile 84: Zeile 84:     
Da sich nach dem Faraday'schen Prinzip um jeden stromdurchflossenen Leiter ein Magnetfeld bildet, erzeugt der Stromfluss ein magnetisches Feld um die stromdurchflossene Spule des TMS-Gerätes. Dieses Magnetfeld ist desto stärker, je höher der Strom ist, der durch die Spule fließt. Das Magnetfeld breitet sich durch den Raum aus und durchdringt auch die Schädelkalotte, auf der die Spule des TMS-Gerätes für gewöhnlich aufliegt, ohne durch das Gewebe wesentlich abgeschwächt zu werden. Eine Abschwächung erfolgt nur durch die zunehmende Distanz von der Spule. Im ZNS-Gewebe unterhalb der Schädelkalotte erzeugt das Magnetfeld (B), solange Strom durch die Spule (Coil) fließt, ein elektrisches Feld, dessen Polarisierung entgegengesetzt zu jener des Stroms in der Spule ist. Entlang des so erzeugten elektrischen Feldes (E) innerhalb des ZNS-Gewebes kommt es zu einem Elektronenfluss.
 
Da sich nach dem Faraday'schen Prinzip um jeden stromdurchflossenen Leiter ein Magnetfeld bildet, erzeugt der Stromfluss ein magnetisches Feld um die stromdurchflossene Spule des TMS-Gerätes. Dieses Magnetfeld ist desto stärker, je höher der Strom ist, der durch die Spule fließt. Das Magnetfeld breitet sich durch den Raum aus und durchdringt auch die Schädelkalotte, auf der die Spule des TMS-Gerätes für gewöhnlich aufliegt, ohne durch das Gewebe wesentlich abgeschwächt zu werden. Eine Abschwächung erfolgt nur durch die zunehmende Distanz von der Spule. Im ZNS-Gewebe unterhalb der Schädelkalotte erzeugt das Magnetfeld (B), solange Strom durch die Spule (Coil) fließt, ein elektrisches Feld, dessen Polarisierung entgegengesetzt zu jener des Stroms in der Spule ist. Entlang des so erzeugten elektrischen Feldes (E) innerhalb des ZNS-Gewebes kommt es zu einem Elektronenfluss.
Schematischer Aufbau einer Spule zur magnetischen Stimulation
      
Die Magnetstimulation beruht somit auf dem physikalischen Prinzip der elektromagnetischen Induktion. In einem elektrischen Leiterkreis treten Induktionsströme auf, wenn entweder die Stellung des Leiters in einem stationären Magnetfeld verändert wird oder wenn das Magnetfeld, das sich um den elektrischen Leiter befindet, sich verändert. Dabei ist die Induktionsstrom stets so gerichtet, dass er dem Vorgang, der ihn erzeugt, entgegenwirkt und ihm somit Energie entzieht. Da die Reizwirkung an Nervenstrukturen nicht durch das Magnetfeld, sondern vielmehr durch den via Magnetfeld im Gewebe induzierten elektrischen Strom verursacht wird, benötigt man für die Magnetstimulation einen möglichst kurzen Magnetfeldpuls.
 
Die Magnetstimulation beruht somit auf dem physikalischen Prinzip der elektromagnetischen Induktion. In einem elektrischen Leiterkreis treten Induktionsströme auf, wenn entweder die Stellung des Leiters in einem stationären Magnetfeld verändert wird oder wenn das Magnetfeld, das sich um den elektrischen Leiter befindet, sich verändert. Dabei ist die Induktionsstrom stets so gerichtet, dass er dem Vorgang, der ihn erzeugt, entgegenwirkt und ihm somit Energie entzieht. Da die Reizwirkung an Nervenstrukturen nicht durch das Magnetfeld, sondern vielmehr durch den via Magnetfeld im Gewebe induzierten elektrischen Strom verursacht wird, benötigt man für die Magnetstimulation einen möglichst kurzen Magnetfeldpuls.
Zeile 90: Zeile 89:  
Der Stromfluss durch die Spule erfolgt in einem Kreislaufsystem, der einen aufladbaren Kondensator und einen Thyristor (Halbleiterschalter, der hohe Spitzenströme in kurzer Zeit schalten kann und zur Entladung des Kondensatorstroms in die Spule dient) enthält. Der Kondensator, der zunächst mit 2.000 - 3.000 Volt aufgeladen wird, wird durch das Öffnen bzw. Schließen des Thyristors entladen. Der Strom fließt durch einen elektrischen Widerstand zur Spule und dann wieder zurück über eine Diode, die dazu beiträgt, die Aufheizung der Spule und den Stromverbrauch zu reduzieren.
 
Der Stromfluss durch die Spule erfolgt in einem Kreislaufsystem, der einen aufladbaren Kondensator und einen Thyristor (Halbleiterschalter, der hohe Spitzenströme in kurzer Zeit schalten kann und zur Entladung des Kondensatorstroms in die Spule dient) enthält. Der Kondensator, der zunächst mit 2.000 - 3.000 Volt aufgeladen wird, wird durch das Öffnen bzw. Schließen des Thyristors entladen. Der Strom fließt durch einen elektrischen Widerstand zur Spule und dann wieder zurück über eine Diode, die dazu beiträgt, die Aufheizung der Spule und den Stromverbrauch zu reduzieren.
   −
Die Reichweite des Magnetfeldes und damit die Stärke des induzierbaren elektrischen Stromflusses ist begrenzt. Beträgt bei voller Reizstärke die Felddichte bei 3 cm noch ca. 1,2 Tesla, fällt sie bereits bei 5 cm Entfernung auf 0,6 Tesla ab und unterschreitet bei einer Distanz von 10 cm die Grenze von 0m2 Tesla. Bei  cm Entfernung liegt die Magnetfelddichte nur noch bei etwa 10% des Ausgangswertes. Bereits eine kleine Änderung des Spulenabstandes von 1 cm erzeugt eine Verminderung der Magnetfelddichte von 0,1 Tesla am Wirkungsort. Somit haben anatomische Gegebenheiten wie die Schädeldicke bereits einen großen Einfluss auf die erforderliche Reizstärke. Das führt dazu, dass entsprechende Stimulationsgeräte mit hohen Spannungen (bis 3.000 Volt), hohem Stromfluss (bis 8.000 Ampere) und extrem kurzen Zeitspannen (100 µs) in den Spulen arbeiten müssen, damit überhaupt genügend Strom im Gewebe induziert werden kann. Die Geräte sind für den Laien leicht erkennbar, denn sie machen Lärm während ihrer Schaltzeit. Der Knall jedes Impulses kann so laut sein, dass Ohrenstöpsel getragen werden müssen.
+
Die Reichweite des Magnetfeldes und damit die Stärke des induzierbaren elektrischen Stromflusses ist begrenzt. Beträgt bei voller Reizstärke die Felddichte bei 3 cm noch ca. 1,2 Tesla, fällt sie bereits bei 5 cm Entfernung auf 0,6 Tesla ab und unterschreitet bei einer Distanz von 10 cm die Grenze von 0m2 Tesla. Bei  cm Entfernung liegt die Magnetfelddichte nur noch bei etwa 10% des Ausgangswertes. Bereits eine kleine Änderung des Spulenabstandes von 1 cm erzeugt eine Verminderung der Magnetfelddichte von 0,1 Tesla am Wirkungsort. Somit haben anatomische Gegebenheiten wie die Schädeldicke bereits einen großen Einfluss auf die erforderliche Reizstärke. Das führt dazu, dass entsprechende Stimulationsgeräte mit hohen Spannungen (bis 3.000 Volt), hohem Stromfluss (bis 8.000 Ampere) und extrem kurzen Zeitspannen (100 µs) in den Spulen arbeiten müssen, damit überhaupt genügend Strom im Gewebe induziert werden kann. Die Geräte sind für den Laien leicht erkennbar, denn sie machen Lärm während ihrer Schaltzeit. Der Knall jedes Impulses kann so laut sein, dass Ohrenschützer getragen werden müssen.
    
Für den Patienten kann man in Sachen "Magnetfeldtherapie" bisher eine grobe Leitlinie geben. Es gibt zwar die technische Möglichkeit, mit sehr dichten Magnetfeldern neurologische Effekte durch das Auslösen von Nervenimpulsen (sog. magnetisch evozierten Potentialen) zu bewirken, aber diese Geräte stehen nur in wenigen Universitäten auf der Welt und es gibt nur eine Handvoll Gerätehersteller, die man bei http://www.biomag.helsinki.fi/tms/provide.html nachlesen kann. Alle diese Geräte fallen in die seriöse Rubrik der sog. nicht-invasiven, schmerzfreien, kortikalen Stimulation mit Magnetfeldern. Die Geräte sind ausgesprochen teuer und sie stehen mit Sicherheit nicht in der Praxis eines Heilpraktikers oder Arztes.
 
Für den Patienten kann man in Sachen "Magnetfeldtherapie" bisher eine grobe Leitlinie geben. Es gibt zwar die technische Möglichkeit, mit sehr dichten Magnetfeldern neurologische Effekte durch das Auslösen von Nervenimpulsen (sog. magnetisch evozierten Potentialen) zu bewirken, aber diese Geräte stehen nur in wenigen Universitäten auf der Welt und es gibt nur eine Handvoll Gerätehersteller, die man bei http://www.biomag.helsinki.fi/tms/provide.html nachlesen kann. Alle diese Geräte fallen in die seriöse Rubrik der sog. nicht-invasiven, schmerzfreien, kortikalen Stimulation mit Magnetfeldern. Die Geräte sind ausgesprochen teuer und sie stehen mit Sicherheit nicht in der Praxis eines Heilpraktikers oder Arztes.
8.366

Bearbeitungen

Navigationsmenü